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Sumnary

This paper contains an exact solution in series form tc the problem
preserted by s irrotational, axisymmetric flow of an ideal, incompressitle
fluid past a 30lid torus of circular cross ssction, At infinity tae fluid
is asaumed to be in a state of uniform motion parallel to the axis of the
toruse The solution is based on the use of toroidal coordinutas, and is
given in terms of Legendre functione of fractional order as well as com-
plete and incomplete elliptic integrels of the first and second Xind, The
indivisual comycusul molutions employed here are interpreted piyesically
through the r r-=iatiou to the basic ring singularities represented by the
ecource ring and the vertex ring.

The problem is first approached via Stoke2' stream function exclusively
and is subseguently re-z:lved indepsndontly in terms of the velocity po-
tential alon2. The convargence of the pertinent series developments is
found to be wsusually favorable, and a complate stream lins pattern, car-

respording to ar illustrative oumerical example, is included, . |




Introduction

Putential problems involving toroidal boundariee have received re-
peated attention in the literaturc, Apparently the first investigation
of this kind is due to Carl Neumann [1]1who dealt with he distribution
of tempersture in a solid torus and with the analogous problem in electro-
statics, The correspording axisymeetric prodlen in ideal fluid flow was
first investigated by Hicks [2] and was recousidered later by Dysoz (3],
who also cnninod certain unsymmstric flow cases auoc‘h.bod with the
torus, The rigorous treatmsnt of aliied problems in the theory of elasti-
city is more recent; Freiberger [L] disposed of the problem of pure torsion
of a torus of circular cross section, whereas the case of purs tending was
treated by the current suthors [S). It is this last investigation which
motivated the present amﬁ, and the analytical prerequisiies nsederd here
were established to a considerable estent ‘n comnection with the work
described 1n [5].

Although the hydrodynamic investigations cited previously ylelded
foraal solutions charscterizing the irrrtstiocnal axisymmetric flow of an
inviscid, incompress'ble fluid past a torus of circular centerline and
circular cross section, the problem appeare to be in need of further at~
tention. Ricks [27] based his analysis on toroidal courdinates and toroidal
harmonics bhut did not deal with the determination of the stream function,
which is of primary physical interest. Dyson [3], on the other hand, arrived
at a representation of the potential and stream functionz in terms of series
of definite integrals; the significance of this represant:tion fur mmeri-

cal evaluaticr.a of the results appears to be rather limited, In view of

Lyumbsrs in brackets refer to the bibliography at the end of the paper.
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the currently available muzmarical tabulations of the Legendre functions of
fractional order (6], a re-examination of the problem weuld seem to serve
a useful purpose,

In 1948 Weinstein 7] discussad axially symmetric potential flows and,
in particular, coneidered an extension of the me’ ~d of sources and sinks
to cases in which the singularitiss are no longer confined to the a=is of
symostry. This paper stimulated further interest in related protlems. Thus,
Streeter [8], with the aid of ring and disk singularities, obtained stream-
line patterns corresponding to {lows around varicus blunt-nosed half-bodies
and annular-shaped bodies; his approach is baeed on a oeni-mnrical pro-
cedure, At the same tims elliptic integral representations were established
[97] for the potential and stream functions appropriate to rotationally
symmstric distributions of sources and vorticity over circular rings and
disks. Concurrently, Van Tuyl [10] deduced a similar analytical repre-
sentation of the flow genmerated by a uniform source disk, and applied it
to the study of a new family of half-bodies, Still more recemtly,

Streeter [11] arrived at the fiow zround a torus of mearly circular cross
section by superpositicu oif & ring doublet upon 8 nniform stream, This
solution will later be identified as a first approximation to the rigorou
solution for the torus of ex=ctly rircular cross section; moreoTer, the
results to be developed here are free from thw indirect t{rial-and-error
features inherent in Streeter's approach. Reference should also be made
to a peper by Schiffman and Spenzer (127 in which toroidal coordinates are
used to study the flow avout & isms-shaped cblect,

In what follows we examimw csricin pertinsnt sequences cf singular so-
lutions of the governing equations referred tc toroidai cocrdiinates, The

physical significance of thess component =nluticns; in terms of wi:izh the
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solution to the torus problem will ultimately be expanded, is investigated
with particular attention to the presence or atsence of a :irculation in
the corresponding potential and stream functions: it is shown how the fore-
going componant solutions may be generated through successive limit pro-
cesses applied to the basic axisymmetric ring singularities of the source
ring and the vortex ring. This part of the paper may be of interest beyond
the present application. The torus problem is then formulated and solved
on the basis of the stream-function approach., A second, indspendent so-
lution, resting on the potential-function approach, is indicated merely
since it provides further insight intc the problem under conaidex;ation.

In order to render tfn present exposition sensibly self-containsd, sowe of

the material given in [5] has also been briefly included here.

The Governing Equations. Toroidal Coordinates

For the sake of convenience we summvize at this place the tasic
equations governing the steady irrotational flow of en ideal incompressible
fluid in the presence of axial syzmetry., With reference to the crylindri-
cal coordinates (p,Y,z), where the z-axis is assumed coincident with the
axis of symmetiry, the velocity pctential @(p,s) satisfies Laplace's

equatinn in ¢the form,

3 3 = 2
5Fd) * P8 = 0 (1)
and the velocity comporents are given by

v =g, v =g

ALt 2)

Stoke:: stream function W(P,z) is introduced through the relations,

2Subacripta attached to functione which originally bear no subscript
denote differentiation with respect to the argument indicated,
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v, = - PPos 56’P= of, (3)
and, alternatively, admits the rerresentation,
"(Pv“) “
Y ip,a) = J [P¢ % - PP @] (k)
2 P
(Pye2,)

ia which (Po,zo) are the coordinates of an arbitrary fixed point in the
meridional kalf-plane p 2 0. In view cf Equation (1), which may be re-
garded as an integrability condition for Rquations (3), the line integral
(4) is independent of the path, and (I/(P,s) is single-valued, in any #imply
conmected domain throughout which ¢(P,s) is regular. As was emphasized
by Weinstein [7], the single-valuednsss of ¢ can no longer be inferred
if the domain of regularity of @# is multiply connected. Similarly, And
under analogous circumstances, a single-valued stream function may give
riee to a multiple-valued velocity noteatial. A pctential function and a
stream function which are related according to Equations (3 will hence-
forth be called conjugate with respect to each other,

1t follows from Equations (1), (3) that {/ conforms to the "strean

equation®,
3 .1 3 ,1
w= (= - =0
% G R G ¥) (5)
and Equations (2), (3) further imply,
I | = 1 \
'p"ﬁws’ 'z"ﬁwf) 6)

A specific wvelocity field determines its associated potential as well as
the conjugate stream function only within an arbitrary additive constant,.
Finally, we recall that the curves {/ (ps8) = constant are the etream
lines and that 277 (Wz - %) constitutes the total flow between the
stream surfaces genereted by (/= (/| and W= (/.




In what follows we shall have occasion 1o refsr to toroidai coordinates

(a,,p, y) which are defined through the trausformation,

- - -

x=a-3__-—l-)-cosy, y=a-§—-ﬁsiny, z=a—;Lp- (7)

where (x,y,2) are the Cartesian cocrdinates and
P = co3s dy P = 8in a, q = cosh f3, 5,'=cinhp (8)

The ranges of the curvilinear coordinates are given by

0% at2m, 0£p < x, 0= y<om (9)
so that
-1%p,p=1i, i1€q< o, 0£q< (10)

Furtliermore, with the auxiliary nctation,

1/
A= (- 0p) (1)
we have,
p= (x* + :rz)l/2 - —§5 (12)
Equations (7}, (8), (11) imply
(p-§)2+ = pe (z-§)2=§3 (13)

The coordinate surfaces &« = constant are thus spherical bowls of radius
-1
Ifal centered on the z-axis at 2z = p/pP. The surfaces p = constant

are tori, the meridional cross sections of which are the circles of
=1
radius q  centered on the p-axis at p =q/q. As (3 — @ the tori

degenerate into the circle3 p=1, 2 =0, Figure 1 shows the traces of

3Thia normalization of the coordinate transformation (7) is, of course,
unessential,




the foregoing two rutually orthogonal families of coordinale surfacea upon
the meridional half-planes ) = constant.

Tha differential of arc-length is defined by

. 2 2 g2
as? = (3% + (&) + &) ()
) By Ry
and the metric coefficients here sppear as
2 2
hy = hy = M5 h3=*‘f‘ (15)
q
A routina computation now yislds for Laplace's BEquation (1) in toroidal
coordinates,
plag_ + o) = B+ (1= paly =0 (16)
whereas the stream Bquation (5) becomes
My, + U+ T Y= (=) =0 $%)
The toroidal transform of Equations (3) is
=iy g =Ky ;
- - = 1
« 3 P P § e L
‘and the.iofoidal conponeﬁta of the welocity vector assums the form,
N 1
= 2 1
'a /L¢a,—-7‘.é— %
q
> (19)

L
. e e ’
BTEH T Ve

Toroidal Potentisl and Stream Functions?

In this section we consider certain aggregates of solutions to la-
place's Bquation (16) and to the stream equation (17), in toroidal coordi-

hSoe ElB], Chapter X, for a discussion of toroidal harmonics, Toroidal
stream functions are also dealt with in [S].
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nates. Meither of these two equations is separable in the strict senne,

There dc exist, howevsr, pseudo-product solutions of the fors,

Hx,p) = L A(a)B(B) (20)

to Laplace's equation, whereas the stream equation adaits the peeudo-product
solutions,
-2
Y (a)p) = %L- c(a)D(p) (21)
Substitution of Equations (20), (21) into Equations (16), (17), subsequent
separation of variasbles, and adhereace to the restriction that the solutions

scught have & period 277 in o, ultimtely yield,

¢(a.P) = p+|cos na or sin na.:] [Pn_l/z(q) or Qn_l/z(q)]

Y(ag) = m cos na or sin nm] [P"‘_l/z(q) or Q! _ 2(q)] (22)5

g

(n=0, 1, 2, ooo) )

where Pn-l/? and Qn- 1/2 are the legendre functinns of the first and
second kind, respectively.

For future reference, we cite lsgendre's equation, Cee = e =
52  pad + 23P! - (n2 - I)P =Q (23)
n-1/2 n-1/2 L’*n-1/2

and recail the recursion formulas,

Pn-1/2"Pho1p2

wn-l/Z = (2114’ 1)?n+1/2 + (2n-1)Pn_3/2 p (Zh)

237y 170 < (=100, _y sy = By _37)
-

The primes denote Jdifferentiation with respect to the argument q.
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Equations (24) are valid fecr all integral values >f n, and remain vaiid

ir Pn-L/2 is replaced with Qn-l/z‘ We also note the bilinear identity,

' : - _¢en=-1 é
Pr-1/n-3/2 " Faosfeta-1e T - T 0 (25)

Furthermore, we shall need to refer to laplace's integral,

i
P_ Q) = 2 f da (26)7
L2 @ 0 Ya+qceos a

and to the integral representaticna,
m

Q- 1200 = —x]/'—“,- f 99-9/-;99'“ (2n)®
0

which gives rise to the Fourier expansion,

@
./% = # Q_1/2 + % Qn- 1/2 cos na (28)9
n =

where . is defined in Equation (11).

Equations (26), (27) supply the link to the representation of the Le-
gendre functions of fractional index in terms of elliptic integrals. Thus,
let

TR R o] ---- .._i — _‘ _-_.‘_ :———- ------- =1
",‘W/qficcoah—p'ﬂ' z*-‘\[l-kz-q—% (29)
Setting © = a/2 in Bquation (286), we arrive at

7/2
2k j 40 2k
0

Par*7 =7 K (30)

®see [13], art. LS.
7800 [13], p. 361.
8500 E]-hJ, Po u‘30

%Tme argumert of P,_j/; and Qu_3sp 318 henceforth assumed to be
Q, unless otherwise specified.




and setting © = (7 -~ a)/2 in Bquation (27), we reach,

Qjjp = K (31)

where K and XK' are the complete elliptic integrals of the first kind
veferred to the modulus k and the complsmentary modulus k', respectively.,
Alternatively, we miy ueiine moduli,

= r
k = _2_1:’ ki:.‘h_ ? = 1_:." =r_2 (32)
qQt+t q ‘ qQ+ q 1
iz which

ILL
. 572 (33)
2 21
rth(P-l) *']l:/ :ﬁ-;f——
The new moduli are related to k and k', introduced in Equation (29),
through the landen tmafomtion,m
o =8 4-HE (%)
8o that ‘
x1=(1+k')x'=-—'5-x' |
L (31t
glx: (k' -1)(04»1_‘%?{)!

Here l’.1 and ‘1 are the complete elliptic integrals of the first and

s.econd kind based on kl‘ The moduli Ir.l, ki are identical with those

See cnl]’ Pe 507,

Wane second of Equaticns (35) ie obtained by differentiating the
first with respect to k',

10




previcusly employod hy Hicks [2], Fouquet [15], and the current authors
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Symmstric and Antisywmetric riow Flelds

Among the potential and stream functicna it2tad in Fquations (22),
those involving the legendre functicns of the second kind bt;qom infinite
as q -+ 1, and therefore violets the regularity requiremeants on the z-axio
inherent in the torus problem to be considered subsequently. We ahall thus
linmdt the present discussion to the pctantial and stream functions involv-
ing Pn-l /2 and its derivative, which remain aralytic for every finite gq
and vanish at Carteeian infinity: they becoms sinmmlar on the ®*limit circle®,
as q — .

We may distinguish between two btasic flow cases according as the
velocity field is symmetric or antisjmmetiric with respect to the plane
s = 0, that is, according as the wvelocity potential is an even or odd
function of z and a. Symsetric flows are generated b the poventials
and stream functions,

Qn':]AP_l/zCOSM 3

-2
1.n=3“.p;‘_1/2 sin na - (36)
(n" 0, 1, 2, ooo) J

It is important to observe that c‘n and wn do not constitute a conju-
gate pair in the sense of Equations (18). We now seek to establish the
stream function ?p-n and the velocity potential E-n which are conjugate
to d>n ard W, respectively. To this end we confirm with the aid of

Bquations (18). that,




U T B
vn*l-wn—fﬁ'ﬂ (Whey = W)
¢

n+l-$n=g£§_]:(®n*1- o) (37

(n= o, 1, 2, ooo) )

Since Wo = 0, wo may take (bo to be zero, and the foregoing recursion
1elations yield

n
- - )
et TR E ; et (Y- Y
o n )
o =3 E (21 - 1(d, - &, _)) - (38)
. (n=1, 2, 3, «cs) )

In nrder to completes the determination of wn for n=0, 1, 2, «co,

we need to find Wo. For this purpose we introduce the paramster t
through

M -

an(t,k) =@ = — (39)
or, equivalently, through
°)
t = FO,k) = L ——-—ESLE——VE (ko)
(1 = k° 8in” ¥)

am(t,k) being the amplitude function and F(Q,k) the incomplete elliptic
integral of the first kind, both referred to t s modulus k given in
Bquations (29). Thus,

snt = 8in @ = cos g’, cnt = co8s © = sin g’, dnt = (k1)

SE




where sn, cn, dn denote the Jacoblan elliptic fum:t.i.orm12 for the modu-~

lus k.

According to Bquations (30), (36), and (L1l), we may write

O, =pr = 3%@ K! dnt (42)

~ —

Equations (18), applied to the conjugate pair { cbo, 10 o}, by virtus of
Bquation (L42), now leaa %o

v, &z [ E' .2 cn’t
ol (43)
atj']o =_ Y2 it g 3ot cnt

™ i dn’t

where RB' is the cosplete :c1lliptic integral of the second kind based on

-

the modulus k!'. Bquations (L43) are explicitly integrable by recourse to
the identities listed on p. 516 of [14]. There results

;;o = gﬂﬂ [(xl -Bt)t + kzxi :'%’Lt -_K'E(t)] (UJ)B

in which E(t) designates the incomplete elliptic integral of the second
kind for the modulus k, We note from Rquations (38) that ﬁ;n and 5'1,
which are conjugate to the pseudo-product solutions ‘Dn and wn of the
potential and stream equations, no longer possess the pssudo-product struc-
ture. Indeed, a single potential function (Di givea rise to a conjugate

stream function W " whose representation requires an infinite series of

stream functions in pseudo-product form; the closed representation given by

12800
and inte 8.

131t should be nuted that the Jacobian elliptic functions appearing
here may be eliminatad by means of Pquations (ul).

147, Chapter XXII, for a discussion of Jacobian elliptic functions

13




BEquations (38), (LL) was made possible only through the introduction of
elliptic functions and integrals.
Since

an(t + 2K) = ant + 77

L

(LS)
B(t + 2K) = B(t) + 2B
and recalling legendre's identity,
EX' + 'K - KK' = & (L5)
= z

as well as the periodicity properties of the Jacobian elliptic functions,
we conclude from Bquations (LL), (38) that

U e+ 27,p) - VU (ap) =242
(u7)
(n=0,1, 2, ...)

The single-valued potentials '¢n thus correspond to associated conjugate
stream functions 51‘ which are meny-valued for « o < a < o, or else
discontinucus along the cut a= 0 4in the meridional half-plane correspond-
ing to 0= w27, 0= < . This result is consistent with our
previou: obeervations regarding the singular character of Qn as q —» .
On the other hand, the conjugate sequences {En’ Wn] (n=1, 2, 3, o.c)

are both single~valued,

The treatment of the anti-symmetric flow fields generated by

¢n= f‘LPn-l/z i ina

(48)
=2

Wn = %L' Pz;-l/z co8 no.

"
m ; 3




is strictly analogous to the preceding discussion of symmstric fields, and

we may confire ourselves to stating the pertinent results., If {¢n’wn}

and {Bn’ (’/’n ] are conjugate pairs of potential and stream functions, then

e i R ‘-2 / 1 7 i
%4-1'Wn_§n+1(wn+1°‘/n)
E,.n'tl';,n ='227+_}'(¢n+1-¢n)  (L9) {
’v
(n=0, 1, 2, ooo)

and consequently,

n
//n"'z;_;KlTIWi‘%-l) ‘
n

n=¢°-'§Z(21'1)(¢i'¢1_1) ¢ (50)

(n= 1, 2, 3, ooo)

o

- |

o

Here we may take ((lo =0 eince @, vanishes, whereas ¢° turns out to

be given by
g,= Lo -2oe - )] (51)

The functions ¢n’ Wn’ and (l/n are periodic with period 27 in «. On
the other hand, we find that

g (a+ 27,p) ~ B(ap) = VE 1
(52)
(n = 0, 1, 2, ooo)

which indicates a circulaticn in the welocity potentials ¢n conjugate to
the single-valued stream functions (/ e




We now turn to a physical interpretation cof the potential and stream
functions discussed in this section. With regard to symmetric flows, we
note on tie basis of Equation (3.9) of Referenca [37] that the potential of
2 aniform source ring of total strength m and unit radius (coincident

with the limit circle ¢f the toroidal coordinate system) in our present

notation appears as

p=2 ;1; (53)-

with r; and K defined as in Equations (33), (35‘). A trivial compu-
tation, involving Equations (53), (35), (33), (32), and (30), identifies

m - B
¢=-ﬁ CDO, (l/-—w—-(Po (54)
as the potential and sirear .. -~tions sppropriate to the source ring under

consideration. Morsover, we conf. nn‘ with the aid of Equation (47) that

the stream function possesses a cyclic period of 2m, as is consistent with
hydrodynamic theory.

In a similar mauner, guided by Equation (7.5) of Reference [9], we
recognise
= % 6, W= 'EE v,
as the potential and stream functions belonging to the antisymmstric flow

g (55)

generated by a unitnrm vortex ring of writ radius and total circulation [ .
The circulation co;matant I' of the velocity potential is readily verie
fied by means of Equation ("2).

Bquations (S§), (55) eatablish the significance of the initial members

in the sequences of s;mmetric and antisymmetric flows discussed previously.

Uigeq (9], Equation (S5.7).
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The remaining members in thesa twn aggrugates of singular flows, which are
characterized by singulerities of progresesively higher order on the limit
circle, may be genersted through zuccessive z-differentiations applied to
the basic singular sclutions whicth represent the source ring and the vortex
ring., Indeed, a somewhat tedious computation, depending on the repeated
use of the legendre rslations (2L), yields the result,

an _

-'éz_n=' el ¢n-1+'¢n'?—n{_l¢n+l W

a((/nz 2n+1QJ +ay "SZn-l!w i (56)15
B T T L %he170¥; " n+1l

(n=0,1, 2, ...)

7

Moreover, these recursion formulas remain valid if @ and ¢, as well as
W and (/, are interchanged while the signs of the right-hand members are
reversed, As an illustrative exampls we determine the solution correspond-
ing to a ring-doublet, whose potential is the first derivative with respect
to 2 of the potential for a source ring. By Bquations (SL), (56), (50),
the ring-=doublet is thus represented by
= B
#=-2 9
r (57)

(1/=-2—V2—W1=-V—5((1/1-W°)

and these formilas are readily transformed into the expressions derived by

o

Streeter [117].

ISGbaem that ¢_1 = ¢1 and W_l = - Wl’ according to Equations
(2L), (36), (u8).

v -




Solution of the Torus Problem: The Strear—-Function Approach

¥We are now in a position to consider ths main probtlem of this irvesti-
gation, Lst the boundary of the tarus coincide with the parametric sur-

face g =0, (s:e Figure 1). Then, according to Equations (13),

5=2=q = cosh B (58)18

(o)

where a2 and b are the radii of the cross section and of the centerline,
respectively, and /A will be callsd the ®ahape-ratio®™ of the torus.

The problem consists in determining a stream function {/(c,B) which
satisfies Equation (17) througbhout the domain O £ o€ 277, 0 £ P = 50’ and

conforms to the boundary and regularity conditions,

2 .
Ylap)=c, Wlap) =¥ =5 as (a,p) - (0,0) (59)

where ¢ is the initially unknown value of {// on the surface of the torus,
and Wm designates the stream function asscciated with the uniform velo-
city field vP = 0, L M 1 at infinity,

Guided by the antisymmetric nature of the uniform velocity field at

infinity, w=» assume the desired solution in the form,

2 D
Y (ap) = b+ A (60)
n =
with ((/]n defined by the second of Equations (48), and note that ((/(a,p)

automatically conforms to the condition at infinity since wn(o,o) = 0,
The coefficients of superposition & (n=0, 1, 2, ees) are to be deter-
mined cnsistent with the boundary conditions for p = po' By virtue of
Bquations (60), (59), (u48), and (12), this leads to

161me subscript, zero, attached %o any function of B will henceforth

indjcate its evaluation for p = Po.
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\ = o - 1 \
: anpr'x—l/2(q°) cos nol -La;- -2——3 (61)

n=0 (<] /“'o

In order to expand the right-hand member cf Equation {61) in a Fourier
series, we recail the expansion (28). With the aid of this expansion, and

making use of the identitins (2L) applied to the legendre functions of the

second kind, we thus arrive at

m b

Z anP;,_llz(qo) cus NG =

T 20T [ 2 Q% -1/2(%)
#nz:—s[lm—r_-1+1] 1+8m ces na

o
in which 8no designates the Kronecker delta. Rquation (62) implies

r (62)

2¢
= 1l 63
s (j—_l’f )LF (63)
proﬁdad
242 Q! (q))
‘nn Qn-],/Z qo (611)

mQ+ 8no)Pz‘x--il./z(qn)
and, in accordances with Equation (60), the appropriate velocity potential

appears as

0

ap =3+ > a8 (65)
n =

the functions ;n being definsd in Bquations (50) and (51).

It is apparent from the preceding developmsnts that the boundary con-
ditions (59) do not suffice to determine the yet unknown value c¢ of ¢/
on the surface of the torus, This observation is in agreemsnt with the well

known fact that the boundary conditions fail ¢to characterize the sclution

unigusly 1f the flow domin is rultiply connected.’” It follows from

This statemsnt, of courss, in no way contradicte the uniquenese

theorems of hydrodynamics, which require also the egpscification of the
initial conditions; see, for example, [16], p. L22Z.
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Equation (52) that the velocity potent.al represented by Equation (65) is
multiple -valued unless c 18 chosen appropriately. In view of Equation (52),

a circulation-free potential is assured if and onliy if
()
a_ =0 (66)
n=
or, by Equation (63),

® ) -1
cz—%[;‘n][;ﬁ (67)

The complete solution to our problem is now given by Equations (60),
(65), where Wn and ;n are defined in Equations {48), (50), (51), and
the coefficients & follow from Equations (63), (64), (67)s The toroidal
velocity components are readily obtained from Equations (60), (48), (12),
with the ald of BEquations (18): | .

©
vm= a—/‘fé-]-' +% Z 8n [2321’;‘-]]2 - (hnz"l)/Lan__l/z] co8 nol
_ . =
vp = :ﬁ-%‘-'- E aﬂ!’;\__l/2 [2:311.2 sin na+ p cos nd,]
n= J

Finally, we note for future reference, that the seriss (60) admits the

-

> (68)

rearrangemsnt,

2 2
W=%'+2——5[45‘m](wn' as1) (69)

Solution of the Torus Problum: The Potential-Function Approach

this section we sketch a4 second, independent approach to the problem,
in terms of the wvelocity potential, Although this method of attack is more
cumbarsoms than the one adopted previously, it should nevertheless prove to

be instructive, The alternative formulation of the probtlem as a problem of

e g AU 3OO O BROS
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Neunann, requires the determinatior of a function @(a,B) which is narmonic

in the domain 0% af 27, 0% < B,» and obeys the boundary and regularity

corditions,
=0, ¢(“,p) - ¢m =1 as (‘t.'p) -+ (0,0) (70)

% (0,p)

where § o 18 the potential of the uniform velocity field at infinity, we

thus put

o

Bla,p) = 3 + E b #, (1)
n —

with reference to the definition (48) of the potential functions ¢n’
Applying the first of conditions (70), we reach with the aid of Equation
(28),

(bn+1 - bn)P;+ llz(qo) el (bn - bn_ 1)P1'1° 3/2(%) =

uAZ [, .
- [%-3/2(%) =% 1/2(%)] iz

bO = 0. (n= O 2, 2, ooo)

J
Equation (72) is a fini‘te difference equation of the second order for the
uniknown coefficients of superposition bn (n=1, 2, 3, ...) which possesses
an integrating factor px't-l/2(qo)'

Now let

- 13
Cn © (bn.' bn-].)Pr't-l/2Px'1-3/2 (73)

and Equation (72) may be written as

e argument of the lLegendre functions =rpearing in this and the
following equations is understood to be q 0°

21




‘av1 7 %n 7r£[n-3/2 %+1/2) Pa-1y2 (74)

This diffsrence equation of the first order is integrable; by use of the
bilinear identity (25), we obtain

o 1

BT " %~ Pand

n-1/2n- 3/2 I " ) Qn ,(75)
- Al Sn ugA
& % [[2n-3 *%ﬁt‘x-\w—;ﬁ [2n+ 1+HF5J1/L:}

in which A is an arbitrary constant of integration. A second 1ntegration,

based on Equation (75), yields

Z[u_‘lr)x. 0,3 o2+ AT

(n= 1’ 2’ 3’ an

L (78

-

the notation being that of Bquation (64). In order that the series (71)

be convergernt, it is nececsary that
4a b =0 | (77)

n
n - ©

This formal convergence condition, which here takes the place of the singles-
b
valuedness condition (66) ,‘9 serves to determine the parmmeter A\ . Indsad,
since
1lim nln =0 (78)
n - ®

ws conclude from Bgquations (77), (76), that

A= (79)
T

with ¢ define? by EBquation (67), and thue,

19Reca1.1 that the functions @, entering Bquation (71), end the con-
Jugate stream functicns {/_  are @ll sirgle-valued.
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> (60)

(n 1, 2’ 3, ooo)

4

the coefficients &, retaining their previous definition given by Equa-

tions (63), (64), and (67)e This completes tiie indepandsnt determination
of the velocity potential introduced in Equation (71).

With a view toward demonstrating the equivalence of the solntions
derived in this and the preceding sections, we note from Bquation (80) that

n s n 3
% = o_2n+1 .
n 2 ? n

m= m=

(n=0,1, 2; +.0); b =0

- (82)

Ccnsequently, Bquation (69) may be written as

o . n -
eSS T e e o

I, now follows from Bquations (83), (49) that the conjugate velocity po-

tsntial appears as

co’ u’ a
¢==+n>=8[‘>=%b.-f]<¢n-¢w> (81)

which, after a permissiblc rearr:nlsmsnt, assumes the form,

o]

a >
¢=.--22¢°+Z_6bn¢n (85)

Since ¢° = 0, Equation (85) is identical with Equation {71). Tt is

--interesting to observs that ‘he rpresemtation (71) for ﬂ(a.,p), in con~

trast to that given by Equation (65), does not involve any elliptic funciions

or integrals.
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Discussion, Numericai cxample

A comparison of Equations (69) or (84) with the second of Zquatic:us
(57). or of Equation (71) with the first of Equations (57), reveals that
the leading term in the series contributions to ((/(d.,p) and ¢(a,43) are
precisely the stream and potential functions belonging to the ring~doublet.
This observation identifies Streeters solution [11], for the torus of nearly
circular cross section, as a first approximation to the exact solution pre-
sented here. The fact that already & one-term approximation corresponds
to a torus whose cross section is very close to & circle, is accounted for
by the axtremely rapid convergence of the series under consideration,

Although the convergence of the representation (69) for the stream
function is even more favorable than that given in Bquation (60), it was
still found to be more expedient to use the latter representation in the
mumerical exsmpls which follows, The reason for this liea‘ in the loas of .
mmerical accuracy caused by tte difference formations inherent in Equa-
tion (69).

The stream pattern shown in Pigure 2 applies to a ghape-ratio
O =b/a=3, It was obtained by choosing various fixed values of 2, and
by subsequently selecting o and P Judiciously and consistemt with the
last of Bquations {7). For these values of a and f the corresponding
values of {/ were computed from Equation (60) with the aid of the numeri-

. cal tables [6]. A maximm of five terms in the series for (/ was needed
in order to reach an accuracy of four significant figures. OCncs a suf-
ficient number of s-profiles of the stream surface had been established, ¢

‘the stream lines (/= ccnstant werc dstermined grephically.- -In order

to locate the stagnation point -« the point of intersection of the separa-

B EDE ) Tus o ®

tior stream )ine with the meridional section of the torus —- Equation (68)

=




was solved for v Q(a.,p) = 0. A suitable metnod of successive approxi-

mations revealsd that v m(d"pv) vanishes to four significant figures Zor

cos a= 0,121.
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